Stiffness matrix

For the stiffness tensor in solid mechanics, see Hooke's law#Matrix representation (stiffness tensor).

In the finite element method and in analysis of spring systems, a stiffness matrix, K, is a symmetric positive-semidefinite matrix that generalizes the stiffness of Hooke's law to a matrix, describing the stiffness of between all of the degrees of freedom so that

\mathbf{F}=-K\mathbf{x}

where F and x are the force and the displacement vectors, and

U=\frac{1}{2} \;\mathbf{x}^\top\! K \mathbf{x}

is the system's total potential energy.

For a simple spring network, the stiffness matrix is a Laplacian matrix (in order to enforce Newton's third law) describing the connectivity graph between degrees of freedom. Off-diagonal entries contain k_{ij}, the negative stiffness of the spring connecting degree-of-freedom i to j. For example,

K=\left(\begin{array}{rrrrrr}
 13 & -1 &  0 &  0 & -12 &  0\\
-1 &  3 & -1 &  0 & -1 &  0\\
 0 & -1 &  2 & -1 &  0 &  0\\
 0 &  0 & -1 &  3 & -1 & -1\\
-12 & -1 &  0 & -1 &  14 &  0\\
 0 &  0 &  0 & -1 &  0 &  1\\
\end{array}\right)

Contents

Truss Element Stiffness Matrix

The stiffness matrix of a horizontal prismatic truss element is [1] :




K = 	\frac{EA}{L}
\begin{align}

\begin{bmatrix}
 1 & -1 \\
-1 & 1 \\
\end{bmatrix}

\begin{matrix}
u1 \\
u2 \\
\end{matrix}
\end{align}

E: modules of elasticity

L: length

A: cross section area

Beam Element Stiffness Matrix

The stiffness matrix of a prismatic two dimensional horizontal beam element with negligible shear and axial deformation is[2] :


K = 	\frac{EI}{L}
\begin{bmatrix}
 \frac{12}{L^2} &  \frac{6}{L} &  \frac{-12}{L^2}&  \frac{6}{L}\\
\\
  \frac{6}{L} & 4 &  \frac{-6}{L} &2\\
\\
\frac{-12}{L^2}&  \frac{-6}{L}&\frac{12}{L^2}&  \frac{-6}{L}\\
\\
\frac{6}{L} & 2&\frac{-6}{L} &4
\end{bmatrix}
:

The stiffness matrix of a prismatic two dimensional horizontal beam element with negligible shear deformation is[3] :


K = 	
\begin{bmatrix}
 \frac{AE}{L} & 0 & 0& \frac{-AE}{L} & 0 & 0 \\
\\
  0 & \frac{12EI}{L^3} & \frac{6EI}{L^2} &0&   \frac{-12EI}{L^3} &\frac{6EI}{L^2}\\
\\
  0 & \frac{6EI}{L^2} & \frac{4EI}{L} &0&   \frac{-6EI}{L^2} &\frac{2EI}{L}\\
\\
 \frac{-AE}{L} & 0 & 0& \frac{AE}{L} & 0 & 0 \\
\\
  0 & \frac{-12EI}{L^3} & \frac{-6EI}{L^2} &0&   \frac{12EI}{L^3} &\frac{-6EI}{L^2}\\
\\
  0 & \frac{6EI}{L^2} & \frac{2EI}{L} &0&   \frac{-6EI}{L^2} &\frac{4EI}{L}\\
\\
\end{bmatrix}
:

E: modules of elasticity
I: section moment of inertia perpendicular to page
L: length

See also

References

  1. ^ McGuire, William; H.Gallagher, Richard; D.Ziemian, Ronald (2000). Matrix Structural Analysis. United States of America: John Wiley & Sons, Inc. pp. 16~18. ISBN 0-471-12918-6. http://www.amazon.com/Matrix-Structural-Analysis-William-McGuire/dp/book-citations/0471129186. 
  2. ^ D.Cook, Robert (1994). Finite Element Modeling for Stress Analysis. United States of America: John Wiley & Sons, Inc. pp. 20~22. ISBN 0-471-10774-3. http://www.amazon.com/Finite-Element-Modeling-Stress-Analysis/dp/0471107743. 
  3. ^ D.Cook, Robert (1994). Finite Element Modeling for Stress Analysis. United States of America: John Wiley & Sons, Inc. pp. 20~24. ISBN 0-471-10774-3. http://www.amazon.com/Finite-Element-Modeling-Stress-Analysis/dp/0471107743.